196 research outputs found

    Lack of Transmission of Vaccinia Virus

    Get PDF

    Responding to the threat of urban yellow fever outbreaks

    Get PDF
    Comment - No abstract available

    Chapter 3: One Health, One Medicine

    Get PDF
    In recognition that the health of humans, animals, and the environment is linked, One Health seeks to increase communication and collaboration across the disciplines in order to promote, improve, and defend the health of all species on the planet. This strategy may seem simple, but unfortunately it will not be easy to implement. The explosion of medical knowledge in the 20th century led to academic, governmental, and industrial silos of specialization; these silos fostered a compartmentalized approach to health and disease. Building bridges across these silos will require leadership, joint educational programs, financial support, and other strategies that promote transdisciplinary efforts. Before the 20th century, physicians typically worked with veterinary medical colleagues and others to improve the health of humans and animals. This chapter will describe the historical developments in medicine and veterinary medicine leading to the current status quo. It will provide examples of why the status quo is problematic and will highlight the challenges in changing the present paradigm. It will conclude with recommendations on how to implement a One Health approach in the future

    Immunological correlates of protection afforded by PHV02 live, attenuated recombinant vesicular stomatitis virus vector vaccine against Nipah virus disease

    Get PDF
    IntroductionImmune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection.MethodsTwo approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine.ResultsReduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination.Discussion and conclusionIt was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival

    Proposed Revision to the Taxonomy of the Genus Pestivirus; Family Flaviviridae

    Get PDF
    We propose the creation of seven new species in the genus Pestivirus (family Flaviviridae) in addition to the four existing species, and naming species in a host-independent manner using the format Pestivirus X. Only the virus species names would change; virus isolates would still be referred to by their original names. The original species would be re-designated as Pestivirus A (original designation Bovine viral diarrhea virus 1), Pestivirus B (Bovine viral diarrhea virus 2), Pestivirus C (Classical swine fever virus) and Pestivirus D (Border disease virus). The seven new species (and example isolates) would be Pestivirus E (pronghorn pestivirus), Pestivirus F (Bungowannah virus), Pestivirus G (giraffe pestivirus), Pestivirus H (Hobi-like pestivirus), Pestivirus I (Aydin-like pestivirus), Pestivirus J (rat pestivirus) and Pestivirus K (atypical porcine pestivirus). A bat-derived virus and pestiviruses identified from sheep and goat (Tunisian sheep pestiviruses), which lack complete coding region sequences, may represent two additional species

    Theoretical Risk of Genetic Reassortment Should Not Impede Development of Live, Attenuated Rift Valley Fever (RVF) Vaccines Commentary on the Draft WHO RVF Target Product Profile

    Get PDF
    In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment
    • …
    corecore